Serverless On-Demand Scaling : Pushing the pedal when you need it…


A lot of workloads are driven by peak consumption. From my experience, there aren’t the amount of workloads that have a constant performance need are in the minority. Now here comes the interesting opportunity when leveraging serverless architectures… Here you only pay for your actual consumption. So if you tweak your architecture to leverage this, then you can get huge gains!

For today’s post, I’ll be using VMchooser once again as an example. A lot has changed since the last post on the anatomy of this application. Here is an updated drawing of the high level architecture ;

Underneath you can see the flow that’ll be used when doing a “Bulk Mapping” (aka “CSV Upload”). The webapp (“frontend”) will store the CSV as a blob on the storage account. Once a new blob arrives, a function will be triggered that will examine the CSV file and put every entry onto a queue. Once a message is published onto the queue, another function will start processing this message. By using this pattern, I’m transforming this job into parallel processing job where each entry is handled (about) simultaneously. The downside of this, is that there will be contention/competition for the back-end resources (being the data store). Luckily, CosmosDB can scale on the fly too… We can adapt the request units as needed; up or down! So let’s do a small PoC and see who this could work…

Continue reading “Serverless On-Demand Scaling : Pushing the pedal when you need it…”